[2] S. Sarkar, C. Datta, S. Halder, R. Augusiak, Self-testing composite measurements and bound entangled state in a unified framework,arXiv:2301.11409.
[1] O. Makuta, L. T. Ligthart, R. Augusiak, No graph states can be prepared in quantum networks with bipartite sources, arXiv:2208.12099.
JOURNALS
[76] R. Santos, D. Saha, F. Baccari, R. Augusiak, Scalable Bell inequalities for graph states of arbitrary prime local dimension and self-testing, accepted for publication in New Journal of Physics, arXiv:2212.07133.
[75] S. Sarkar, J. J. Borkała, C. Jebarathinam, O. Makuta, D. Saha, R. Augusiak, Self-testing of any pure entangled state with minimal number of measurements and optimal randomness certification in one-sided device-independent scenario, accepted in Physical Review Applied; arXiv:2110.15176.
[74] O. Makuta, B. Kuzaka, R. Augusiak, Fully non-positive-partial-transpose genuinely entangled subspaces, Quantum 7, 915 (2023). [pdf]
[73] S. Sarkar, D. Saha, R. Augusiak, Certification of incompatible measurements using quantum steering, Physical Review A 106, L040402 (2022). [pdf][arXiv]
[72] R. Santos, C. Jebarathinam, R. Augusiak, Scalable noncontextuality inequalities and certification of multiqubit quantum systems,Physical Review A 106, 012431 (2022). [pdf]
[71] J. J. Borkała, C. Jebarathinam, S. Sarkar, R. Augusiak, Device-independent certification of maximal randomness from pure entangled two-qutrit states using non-projective measurements, Entropy 24, 350 (2022). [pdf]
[70] S. Sarkar, R. Augusiak, Self-testing of multipartite GHZ states of arbitrary local dimension with arbitrary number of measurements per party, Physical Review A 105, 032416 (2022). [pdf]
[69] M. Demianowicz, G. Rajchel-Mieldzioć, R. Augusiak, Simple sufficient condition for subspace entanglement, New Journal of Physics 23, 103016 (2021); arXiv:2107:07530. [pdf]
[68] S. Sarkar, D. Saha, J. Kaniewski, R. Augusiak, Self-testing quantum systems of arbitrary local dimension with minimal number of measurements, npj Quantum Information 7, 151 (2021); arXiv:1909.12722. [pdf]
[67] O. Makuta, R. Augusiak, Self-testing maximally-dimensional genuinely entangled subspaces within the stabilizer formalism, New Journal of Physics 23, 043042 (2021); arXiv: 2012.01164. [pdf]
[66] C. Datta, T. Biswas, D. Saha, R. Augusiak, Perfect discrimination of quantum measurements using entangled states, New Journal of Physics 23, 043021 (2021);arXiv: 2012.07069.[pdf]
[64] E. Woodhead, J. Kaniewski, B. Bourdoncle, A. Salavrakos, J. Bowles, A. Acin, R. Augusiak, Maximalrandomness from partiallyentangledstates, Physical Review Research 2, 042028(R) (2020). [pdf]
[63] D. Saha, R. Santos, R. Augusiak, Sum-of-squares decompositions for a family of non-contextuality inequalities and self-testing of quantum devices, Quantum 4, 302 (2020). [pdf]
[62] M. Demianowicz, R. Augusiak, An approach to constructing genuinely entangled subspaces of maximal dimension, Quantum Information Processing 19, 199 (2020). [arXiv]
[61] F. Baccari, R. Augusiak, I. Šupić, J. Tura, A. Acin, Scalable Bell inequalities for qubit graph states and robust self-testing, Physical Review Letters 124, 020402 (2020). [arXiv]
[60] M. Demianowicz, R. Augusiak, Entanglement of genuinelyentangledsubspaces and states: exact, approximate, and numericalresults, Physical Review A 100, 062318 (2019). [arXiv]
[59] R. Augusiak, A. Salavrakos, J. Tura, A. Acín, Bell inequalitiestailored to the Greenberger-Horne-Zeilingerstates of arbitrarylocal dimension, New Journal of Physics21, 113001 (2019). [link to pdf]
[58] J. Kaniewski, I. Šupić, J. Tura, F. Baccari, A. Salavrakos, R. Augusiak, Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems, Quantum 3, 198 (2019). [pdf]
[57] J. Tura, A. Aloy, F. Baccari, A. Acin, M. Lewenstein, R. Augusiak, Optimization of device-independent witnesses of entanglementdepth from two-body correlators, PhysicalReview A 100, 032307 (2019).
[56] A. Aloy, J. Tura, F. Baccari, A. Acin, M. Lewenstein, R. Augusiak, Device-independent witnesses of entanglement depth from two-body correlations, Physical Review Letters 123, 100507 (2019) [pdf]
[55] F. Baccari, J. Tura, M. Fadel, A. Aloy, J.-D. Bancal, N. Sangouard, M. Lewenstein, A. Acin, R. Augusiak, Bell correlations depth in many-body systems, Physical Review A 100, 022121 (2019). [pdf]
[54] I. Šupić, A. Coladangelo, R. Augusiak, A. Acín, A simple approach to self-testing multipartite states, New Journal of Physics 20, 083041 (2018). [pdf]
[53] M. Demianowicz, R. Augusiak, From unextendible product bases to genuinely entangled subspaces, Physical Review A 98, 012313 (2018). [pdf]
[52] R. Augusiak, M. Demianowicz, J. Tura, Constructing genuinely entangled multipartite states with applications to local hidden variables models and local state models, Physical Review A 98, 012321 (2018). [51] J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mancinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acin, K. Rottwitt, L. K. Oxenløwe, J. L. O'Brien, A. Laing, M. G. Thompson, Multidimensional quantum entanglementwith large-scale integratedoptics, Science 360, 285 (2018) Link to the paperThe press release
[50] R. Ramanathan, M. T. Quintino, A. B. Sainz, G. Murta, R. Augusiak, Simple and tight monogamy relations for a class of Bell inequalities, Physical Review A 96, 049901 (2017). [49] R. Augusiak, Simple and tight monogamy relations for a class of Bell inequalities, Physical Review A 96, 049901 (2017); 96 0499091(E) (2017).
[48] J. Tura, G. de lasCuevas, R. Augusiak, M. Lewenstein, A. Acín, I. Cirac, Energy as a detector of nonlocality of many-body spin systems, Physical Review X 7, 021005 (2017). The press release [47] A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, S. Pironio, Bell inequalities for maximally entangled states, Physical Review Letters 119, 040402 (2017).
[46] F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, A. Acín, Unbounded randomness certification using sequences of measurements, Physical Review A 95, 020102(R) (2017). [45] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A. Acin, M. Lewenstein, Random bosonic states for robust quantum metrology, Physical Review X 6, 041044 (2016).
[44] R. Augusiak, J. Kołodyński, A. Streltsov, M. N. Bera, A. Acin, M. Lewenstein, Asymptotic irrelevance of entanglement in quantum metrology, Phys. Rev. A 94, 012339 (2016).
[43] M. Lewenstein, R. Augusiak, D. Chruściński, S. Rana, J. Samsonowicz, Sufficient separability criteria and positive maps, Phys. Rev. A 93, 042335 (2016).
[42] I. Supić, R. Augusiak, A. Salavrakos, A. Acin, Self-testing protocols based on the chained Bell inequalities, New J. Phys. 18, 035013 (2016).
[41] R. Ramanathan, R. Augusiak, G. Murta, XOR games with d outcomes and the task of non-local computation, Phys. Rev. A 93, 022333 (2016).
[40] W. Kłobus, M. Oszmaniec, R. Augusiak, A. Grudka, Communication strength of boxes violating monogamy relations, Foundations of Physics 46, 620-634 (2016).
[39] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín, N. Brunner, Entanglement, steering, and Bell nonlocality are inequivalent for general measurements, Physical Review A 92, 032107 (2015).
[38] J. Tura, R. Augusiak, A. B. Sainz, B. Lucke, C. Klempt, M. Lewenstein, A. Acín,Nonlocality in many-body quantum systems detected with two-body correlators, Annals of Physics 362, 370 (2015).
[37] A. Streltsov, R. Augusiak, M. Demianowicz, M. Lewenstein, Towards a Unified Approach to Entanglement Distribution, Physical Review A 92, 012335 (2015).
[36] R. Augusiak, M. Demianowicz, J. Tura, A. Acín, Entanglement and nonlocality are inequivalent for any number of particles, Physical Review Letters 115, 030404 (2015).
[35] Ll. Masanes, M. P. Muller, D. Pérez-García,R. Augusiak, Entangling dynamics beyond quantum theory, Journal of Mathematical Physics 55, 122203 (2014).
[34] R. Augusiak, M. Demianowicz, M. Pawłowski, J. Tura, A. Acín, Elemental and tight monogamy relations in nonsignalling theories, Physical Review A 90, 052323 (2014).
[33] R. Augusiak, M. Demianowicz, A. Acin,Local hidden--variable models for entangled quantum states, Journal of Physics A 42, 424002 (2014); special issue of Journal of Physics A ``50 years of Bell's theorem''
[32] J. Tura, A. B. Sainz, T. Vértesi, A. Acín, M. Lewenstein, R. Augusiak, Translationally invariant multipartite Bell inequalities involving only two-body correlators, Journal of Physics A 42, 424024 (2014); special issue of Journal of Physics A ``50 years of Bell's theorem''.
[31] J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewenstein, and A. Acín, Detecting nonlocality in many-body quantum states, Science 344, 1256-1258 (2014).
[30] A. B. Sainz, T. Fritz, R. Augusiak, J. Bohr Brask, R. Chaves, A. Leverrier, A. Acin, Exploring the Local OrthogonalityPrinciple, PhysicalReview A 89, 032117 (2014).
[29] R. Augusiak, J. Bae, J. Tura, and M. Lewenstein,Checking the optimality of entanglementwitnesses: an application to structuralphysicalapproximations, Journal of Physics A: Mathematical and Theoretical47, 065301 (2014) (Editorial highlight in 2014).
[28] Ll. Masanes, M. P. Müller, R. Augusiak, D. Perez-Garcia,Existence of an information unit as a postulate of quantum theory,Proceedings of the National Academy of Sciences110, 16373-16377 (2013).
[27] T. Fritz, A. B. Sainz, R. Augusiak, J. B. Brask, R. Chaves, A. Leverrier, A. Acin, LocalOrthogonality: a multipartite principle for correlations, Nature Communications 4, 2263 (2013).
[26] P. Badziag, P. Horodecki, R. Horodecki, R. Augusiak,Separability in terms of a single entanglementwitness, PhysicalReview A 88, 010301(R) (2013).
[25] R. Augusiak, J. Tura, J. Samsonowicz, M. Lewenstein, Entangledsymmetricstates of N qubitswithpositive partial transpositions,PhysicalReview A 86, 042316 (2012).
[24] J. Tura, R. Augusiak, P. Hyllus, M. Kus, J. Samsonowicz, M. Lewenstein,Four-qubitPPTentangledsymmetric states, PhysicalReview A 85, 060302(R) (2012).
[23] R. Augusiak, T. Fritz, Ma. Kotowski, Mi. Kotowski, M. Pawlowski, M. Lewenstein, A. Acin,Tight Bell inequali- tieswith no quantum violation from qubitunextendible product bases, PhysicalReview A 85, 042113 (2012).
[22] R. Augusiak, G. Sarbicki, and M. Lewenstein,Optimaldecomposablewitnessesrevisited, PhysicalReview A 84, 052323 (2011).
[21] R. Augusiak, J. Stasinska, C. Hadley, J. K. Korbicz, M. Lewenstein, A. Acin, Bell inequalitieswith no quantum violation and unextendible product bases, PhysicalReviewLetters107, 070401 (2011).
[20] R. Augusiak, J. Tura, and M. Lewenstein,A note on the optimality of decomposableentanglementwitnesses and completelyentangledsubspaces, Journal of Physics A: Mathematical and Theoretical44, 212001 (2011) (Editorial highlight in 2011; see also Insight).
[19] R. Augusiak, J. Bae, L. Czekaj, and M. Lewenstein,On structuralphysicalapproximations and entanglement breaking maps, Journal of Physics A: Mathematical and Theoretical44, 185308 (2011).
[18] R. Augusiak, D. Cavalcanti, G. Prettico, and A. Acin,Perfect Quantum PrivacyImpliesNonlocality, PhysicalReviewLetters104, 230401 (2010).
[17] A. Acin,R. Augusiak, D. Cavalcanti, C. Hadley, J. K. Korbicz, M. Lewenstein, Ll. Masanes, M. Piani,Unified framework for correlations in terms of local quantum observables, PhysicalReviewLetters104, 140404 (2010).
[16] R. Augusiak, F. M. Cucchietti, F. Haake, and M. Lewenstein,Quantum kineticIsingmodels, New Journal of Physics12, 025021 (2010).
[15] R. Augusiak, J. Grabowski, M. Kuś, M. Lewenstein, Searching for extremalPPTentangledstates, Optics Communications283, 805 (2010).
[14] R. Augusiak, M. Lewenstein,Towardsmeasurable bounds on entanglementmeasures, Quantum InformationProcessing8, 493 (2009).
[13] R. Augusiak, P. Horodecki, Multipartitesecret key distillation and boundentanglement, PhysicalReview A 80, 042307 (2009).
[12] R. Augusiak, J. Stasińska,Positivemaps, majorization, entropicinequalities and detection of entanglement, New Journal of Physics11, 053018 (2009).
[11] R. Augusiak, P. Horodecki, W-likeboundentangledstates and secure key distillation, EurophysicsLetters 85, 50001 (2009).
[10] R. Augusiak, M. Demianowicz, P. Horodecki, Universal observabledetecting all two-qubitentanglement and determinant-basedseparabilitytests, PhysicalReview A 77, 030301(R) (2008).
[9] R. Augusiak, J. Stasińska, General scheme for construction of scalarseparabilitycriteria from positivemaps, PhysicalReview A 77, 010303(R) (2008).
[8] R. Augusiak, J. Stasińska, P. Horodecki, Beyond the standard entropicinequalities: Strongerscalar separabilitycriteria and theirapplications,PhysicalReview A 77, 012333 (2008).
[7] R. Augusiak, Scattering of Dirac particles from nonlocalseparablepotentials: The eigenchannelapproach, PhysicalReview C 75, 064002 (2007).
[6] R. Augusiak, J. Stasińska, Rotationallyinvariantstates and boundentanglement, PhysicsLetters A 363, 182 (2007).
[5] P. Horodecki, R. Augusiak, M. Demianowicz, General construction of noiselessnetworksdetectingentanglementwith the help of linear maps, PhysicalReview A 74, 052323 (2006).
[4] R. Augusiak, P. Horodecki, Boundentanglementmaximallyviolating Bell inequalities: Quantum entanglement is not fullyequivalent to cryptographic security, PhysicalReview A 74, 010305(R) (2006).
[3] P. Horodecki, R. Augusiak, Quantum statesrepresentingperfectlysecurebitsarealwaysdistillable,PhysicalReview A 74, 010302(R) (2006).
[2] R. Augusiak, P. Horodecki, GeneralizedSmolinstates and theirproperties, PhysicalReview A 73, 012318 (2006).
[1] R. Augusiak, Non-relativistic quantum scattering from non-localseparablepotentials: The eigenchannelapproach,Annalen der Physik 14, 398 (2005). [link to the paper] [arXiv version]
[2] J. Tura, A. B. Sainz, T. Grass, R. Augusiak, A. Acin, M. Lewenstein, Entanglement and Nonlocality in Many-Body Systems: a primer, Proceedings of the International School of Physics "Enrico Fermi" 2014 in Varenna (Course 191 - Quantum Matter at UltralowTemperatures); arXiv:1501.02733.
[3] A. Acin, M. L. Almeida, R. Augusiak, and N. Brunner, Guessyourneighbour's input: no quantum advantage but an advantage for quantum theory, in Quantum Theory: InformationalFoundations and Foils, FundamentalTheories in Physics 181, eds. G Chiribella and R. W. Spekkens, (Springer, 2016); arXiv:1205.3076.
[4] R. Augusiak, F. M. Cucchietti, M. Lewenstein, Many body physics from a quantum information perspective, in Modern Theories of Many-ParticleSystems in CondensedMatterPhysics, eds. D. C. Cabra, A. Honecker, and P. Pujol, Lecture Notes in Physics843, pp. 245-294 (2012); arXiv:1003.3153.
[5] A. Niederberger, S. Braungardt, U. Ebling, T. Grass, P. Hauke, A. Kubasiak, A. Zamora, R. Augusiak, O. Dutta, E. Szirmai, M. Ciappina, F. M. Cucchietti, A. Eckardt, J. K. Korbicz, G. J. Lapeyre, G. Szirmai, L. Tagliacozzo, M. Rodriguez, P. Massignan, M. Lewenstein, Theoreticalpathwaystowardsexperimental quantum simulators, OpticaPura y Aplicada44, 333-345 (2011) [pdf]
[6] P. Horodecki, R. Augusiak, On quantum cryptographywithbipartiteboundentangledstates, Quantum InformationProcessing: FromTheory to Experiment, NATO Science Series III, Vol. 199, edited by D. G. Angelakiset al., IOS Press, Amsterdam, 2006, pp. 19-29; arXiv:0712.3999.